If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 112896L = 3186376.7 + -7902.72L + 4.90L2 Solving 112896L = 3186376.7 + -7902.72L + 4.90L2 Solving for variable 'L'. Reorder the terms: -3186376.7 + 112896L + 7902.72L + -4.90L2 = 3186376.7 + -7902.72L + 4.90L2 + -3186376.7 + 7902.72L + -4.90L2 Combine like terms: 112896L + 7902.72L = 120798.72L -3186376.7 + 120798.72L + -4.90L2 = 3186376.7 + -7902.72L + 4.90L2 + -3186376.7 + 7902.72L + -4.90L2 Reorder the terms: -3186376.7 + 120798.72L + -4.90L2 = 3186376.7 + -3186376.7 + -7902.72L + 7902.72L + 4.90L2 + -4.90L2 Combine like terms: 3186376.7 + -3186376.7 = 0.0 -3186376.7 + 120798.72L + -4.90L2 = 0.0 + -7902.72L + 7902.72L + 4.90L2 + -4.90L2 -3186376.7 + 120798.72L + -4.90L2 = -7902.72L + 7902.72L + 4.90L2 + -4.90L2 Combine like terms: -7902.72L + 7902.72L = 0.00 -3186376.7 + 120798.72L + -4.90L2 = 0.00 + 4.90L2 + -4.90L2 -3186376.7 + 120798.72L + -4.90L2 = 4.90L2 + -4.90L2 Combine like terms: 4.90L2 + -4.90L2 = 0.00 -3186376.7 + 120798.72L + -4.90L2 = 0.00 Begin completing the square. Divide all terms by -4.90 the coefficient of the squared term: Divide each side by '-4.90'. 650280.9592 + -24652.8L + L2 = 0 Move the constant term to the right: Add '-650280.9592' to each side of the equation. 650280.9592 + -24652.8L + -650280.9592 + L2 = 0 + -650280.9592 Reorder the terms: 650280.9592 + -650280.9592 + -24652.8L + L2 = 0 + -650280.9592 Combine like terms: 650280.9592 + -650280.9592 = 0.0000 0.0000 + -24652.8L + L2 = 0 + -650280.9592 -24652.8L + L2 = 0 + -650280.9592 Combine like terms: 0 + -650280.9592 = -650280.9592 -24652.8L + L2 = -650280.9592 The L term is -24652.8L. Take half its coefficient (-12326.4). Square it (151940137.0) and add it to both sides. Add '151940137.0' to each side of the equation. -24652.8L + 151940137.0 + L2 = -650280.9592 + 151940137.0 Reorder the terms: 151940137.0 + -24652.8L + L2 = -650280.9592 + 151940137.0 Combine like terms: -650280.9592 + 151940137.0 = 151289856.0408 151940137.0 + -24652.8L + L2 = 151289856.0408 Factor a perfect square on the left side: (L + -12326.4)(L + -12326.4) = 151289856.0408 Calculate the square root of the right side: 12299.994147999 Break this problem into two subproblems by setting (L + -12326.4) equal to 12299.994147999 and -12299.994147999.Subproblem 1
L + -12326.4 = 12299.994147999 Simplifying L + -12326.4 = 12299.994147999 Reorder the terms: -12326.4 + L = 12299.994147999 Solving -12326.4 + L = 12299.994147999 Solving for variable 'L'. Move all terms containing L to the left, all other terms to the right. Add '12326.4' to each side of the equation. -12326.4 + 12326.4 + L = 12299.994147999 + 12326.4 Combine like terms: -12326.4 + 12326.4 = 0.0 0.0 + L = 12299.994147999 + 12326.4 L = 12299.994147999 + 12326.4 Combine like terms: 12299.994147999 + 12326.4 = 24626.394147999 L = 24626.394147999 Simplifying L = 24626.394147999Subproblem 2
L + -12326.4 = -12299.994147999 Simplifying L + -12326.4 = -12299.994147999 Reorder the terms: -12326.4 + L = -12299.994147999 Solving -12326.4 + L = -12299.994147999 Solving for variable 'L'. Move all terms containing L to the left, all other terms to the right. Add '12326.4' to each side of the equation. -12326.4 + 12326.4 + L = -12299.994147999 + 12326.4 Combine like terms: -12326.4 + 12326.4 = 0.0 0.0 + L = -12299.994147999 + 12326.4 L = -12299.994147999 + 12326.4 Combine like terms: -12299.994147999 + 12326.4 = 26.405852001 L = 26.405852001 Simplifying L = 26.405852001Solution
The solution to the problem is based on the solutions from the subproblems. L = {24626.394147999, 26.405852001}
| 240-3*40=X | | N/50=22/40 | | 2(x+4)-7=1 | | 2x+6-4x-7= | | -9=17+x | | 9(x+3)-6=4x+5(4+x) | | -5(-1)-2(-1)+6= | | 5x-(1+4x)=0 | | -5x-2x+6= | | 8x+3=6x+21 | | 7x-5+3=6+x-10 | | 8(x+5)-13= | | 1/8x-2/3=5/6 | | 4x-7-5x= | | 2(x+5)-x=0 | | 2x^2+3y^2=12 | | (3y^2-x)dx+2y(y^2-3x)dy=0 | | (x^2+4x^6)dx+2xy=0 | | 7n^2+12n-9=0 | | 2y^2+20y+49=x | | 2377960+26x=2067+125x | | X+(0.07x)=5 | | 8x^3+7200x^2-69840000x-21384000000=0 | | 2y^2+20y+49=0 | | 2(3x+4)=16+x | | 2x+6+4x-7= | | x+3(6x+3)=85 | | (3/4)^4= | | 2y^3+y^2+14y+7=0 | | 2b+8=b+14 | | 6/18x=26 | | 8x+18y=65 |